Збірник наукових праць
Азово-Чорноморської орнітологічної станції

Branta Cover Мова статтi: російська Цитувати: Брошко, Е. О. (2016). Некоторые случаи морфо-функциональных адаптаций скелета конечностей птиц. Бранта: Сборник научных трудов Азово-Черноморской орнитологической станции, 19, 112-125 Ключові слова: птахи, біпедалізм, кінцівки, кістки, переріз діафіза, механічні навантаження Перегляди: 730 Branta copyright Branta license

Випуски видання > Випуск №19 (2016)

Бранта: Збірник наукових праць Азово-Чорноморської орнітологічної станції, 112-125

Деякі випадки морфо-функціональних адаптацій скелета кінцівок птахів

Є. О. Брошко

Біпедалізм у птахів значно впливає на морфологію їхніх кінцівок, яка досить консервативна. Вузька спеціалізація кінцівок призводить до більш суттєвих адаптацій їхнього скелета. У даній роботі досліджені кістки кінцівок семи видів птахів: плечова, ліктьова, променева, стегнова, великогомілкова, цівка (табл. 1). Визначені маса (m, г), загальна довжина кістки (l, мм), фронтальний (df, мм) та сагітальний (ds, мм) діаметри середини діафіза; параметри геометрії перерізу діафіза: площа перерізу (А, мм2), головні моменти інерції (Imax, Imin, мм4), полярний момент інерції (J, мм4) (табл. 2). Обчислено індекси: співвідношення діаметрів діафіза (df/ds), індекс компакти (ik), співвідношення головних моментів інерції (Imax/Imin) (табл. 3). Площа перерізу, головні та полярний моменти інерції відображають стійкість кістки до механічних навантажень різного характеру: на стискання, згинання і кручення відповідно. Форма перерізу діафіза безпосередньо пов’язана з цими параметрами. Досліджена також міжвидова алометрія характеристик (табл. 4, 5). Встановлено, що кістки крила мають переважно еліптичну форму перерізу (рис. 1). Але у представників роду Anas вона округла через значні навантаження на кручення, викликані інтенсивним характером польоту. Для перерізу кісток тазової кінцівки (особливо, стегнової) найбільш типова форма – округла (рис. 2). Це свідчить про переважання в тазовій кінцівці навантажень на кручення при більшості форм наземної локомоції. Але водоплавання супроводжується значним підвищенням навантажень на згинання у сагітальній площині, оскільки переріз стегнової кістки Anas має еліптичну форму. Проте дана особливість – не єдиний шлях адаптацій до водоплавання. До підвищення відносних механічних навантажень при збільшенні маси тіла кістки кінцівок птахів пристосовуються шляхом більш інтенсивного відносного зростання механічних показників. Це демонструє їх позитивна алометрія (для площі перерізу – b > 0.67, для моментів інерції – b > 1.33). Лінійні розміри кісток переважно ізометричні до маси тіла. Таким чином, при біпедалізмі властивості кісток кінцівок зазнають скоріше якісних змін (підвищення міцності та стійкості до навантажень), ніж кількісних (відносне збільшення).

 

Читати pdf-версію статті
Лiтература:
  • Богданович И. А. Морфо-экологическая характеристика аппарата наземной локомоции лысухи (Fulica atra). – Киев, 1995. – 38 с. – (Препринт / НАН Украины, Институт зоологии; 95.01).
  • Богданович И. А., Клыков В. И. Особенности формы поперечных сечений длинных костей конечности у птиц // Vestnik zoologii. – 2011. – Т. 45, № 3. – С. 283-288.
  • Клебанова Е. А., Полякова Р. С., Соколов А. С. Морфофункциональные особенности органов опоры и движения зайцеобразных // Тр. Зоол. ин-та. – 1971. – Т. 48. – С. 121-151.
  • Мельник К. П., Клыков В. И. Локомоторный аппарат млекопитающих. Вопросы морфологии и биомеханики скелета. – Киев: Наукова думка, 1991. – 208 с.
  • Шмидт-Ниельсен К. Размеры животных: почему они так важны?: Пер. с англ. – Москва: Мир, 1987. – 259 с.
  • Alexander R. McN. Allometry of the leg bones of moas (Dinornithes) and other birds //
  • J. Zool., Lond. – 1983. – Vol. 200. – P. 215-231.
  • Alexander R. McN. Bipedal animals, and their differences from humans // J. Anat. – 2004. – Vol. 204. – P. 321-330.
  • Biewener A. A. Bone strength in small mammals and bipedal birds: do safety factors change with body size? // J. Exp. Biol. – 1982. – Vol. 98. – P. 289-301.
  • Blob R. W., Biewener A. Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis) // J. Exp. Biol. – 2001. – Vol. 204. – P. 1099-1122.
  • Bogdanovich I. A. Morphoecological peculiarities of pelvis in several genera of rails with some notes on systematic position of the coot, Fulica atra (Rallidae, Gruiformes) // Vestnik zoologii. – 2014. – Vol. 48(3). – P. 249-254.
  • Cubo J., Casinos A. Scaling of skeletal element mass in birds // Belg. J. Zool. – 1994. – Vol. 124. – P. 127-137.
  • Cubo J., Casinos A. Flightlessness and long bone allometry in Palaeognathiformes and Sphenisciformes // Neth. J. Zool. – 1997. – Vol. 47. – P. 209-226.
  • Cubo J., Casinos A. The variation of the cross-sectional shape in the long bones of birds and mammals // An. Sc. Natur. – 1998. – Vol. 36, N. 1. – P. 51-62.
  • Farke A. A., Alicea J. Femoral strength and posture in terrestrial birds and non-avian theropods // Anat. Rec. – 2009. – Vol. 292. – P. 1406-1411.
  • Garcia G. J. M., Silva J. K. L. da. Interspecific allometry of bone dimensions: A review of the theoretical models // Phys. Life Rev. – 2006. – Vol. 3. – P. 188-209.
  • Gould S. J. Allometry and size in ontogeny and phylogeny // Biol. Rev. Cambridge Phill. Soc. – 1966. – Vol. 41, N. 4. – P. 587-640.
  • Habib M. The structural mechanics and evolution of aquaflying birds // Biol. J. Linn. Soc. – 2010. – Vol. 99. – P. 687-698.
  • Habib M. B., Ruff C. B. The effects of locomotion of the structural characteristics of avian long bones // Zool. J. Linn. Soc. – 2008. –Vol. 153. – P. 601-624.
  • Hutchinson J. R., Allen V. The evolutionary continuum of limb function from early theropods to birds // Naturwissenschaften. – 2009. – Vol. 96. – P. 423-448.
  • Lieberman D. E., Polk J. D., Demes B. Predicting long bone loading from cross-sectional geometry // Am. J. Phys. Anthrop. – 2004. – Vol. 123. – P. 156-171.
  • Main R. P., Biewener A. A. Skeletal strain patterns and growth in the emu hindlimb during ontogeny // J. Exp. Biol. – 2007. – Vol. 210. – P. 2676-2690.
  • Maloiy G. M. O., Alexander R. McN., Njau R., Jayes A. S. Allometry of the legs of running birds // J. Zool., Lond. – 1979. – Vol. 187. – P. 161-167.
  • Margerie E. de. Laminar bone as an adaptation to torsional loads in flapping flight // J. Anat. – 2002. – Vol. 201. – P. 521-526.
  • McMahon T. A. Size and shape in biology // Science. – 1973. – Vol. 179. – P. 1201-1204.
  • Prange H. D., Anderson J. F., Rahn H. Scaling of skeletal mass to body mass in birds and mammals // Amer. Natur. – 1979. – Vol. 113, N. 1. – P. 103-122.
  • Simons E. L. R., Hieronymus T. L., O’Connor P. M. Cross sectional geometry of the forelimb skeleton and flight mode in Pelecaniform birds // Journal of Morphology. – 2011. – Vol. 272. – P. 958-971.